Thứ Sáu, 17 tháng 4, 2009

DIMETHYLFORMAMIDE, D.M.F, ( STEEL new DRUM and BULK)


DIMETHYL FORMAMIDE(D.M.F)

CTPT : C3H7ON
Tên khác : Formic acid dimethylamide

I. Tính chất
- D.M.F là dung môi phân cực, tan trong nước, bay hơi chậm, nhiệt độ sôi cao, sẵn sàng hoà tan khí và nhiều chất vô cơ và hữu cơ khác, có hằng số điện môi cao.
- D.M.F là một chất lỏng ưa nước, trong suốt, có mùi đặc trưng, màu nhạt. Nó tan trong nước, cồn, ether, ketone, ester, hydrocacbon vòng. Nó chỉ tan một phần hoặc không tan trong hydrocacbon mạch thẳng.
- Ở nhiệt độ tới hạn, dung dịch D.M.F ít bị thuỷ phân.Tuy nhiên, nếu thêm acid hoặc baze sẽ làm tăng sự thuỷ phân của D.M.F tạo ra acid formic và dimethylamine.
II. Ứng dụng
- D.M.F có khả năng hoà tan cao do cấu trúc phân tử của nó
- D.M.F là một dung môi rất thích hợp cho muối và các hợp chất có trọng lượng phân tử cao do :
· Hằng số điện môi cao
http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com
· Tính chất cho electron
· Có khả năng tạo thành phức chất.
1. Dung môi cho ngành nhựa
- Sợi Polyacrylonitrile
http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com
- Dung dịch Polyacrylonitrile trong D.M.F có nồng độ tương đối cao và độ nhớt của dung dịch thích hợp dùng trong đánh sợi. Do nhiệt độ sôi thấp do đó có thể thu hồi, tinh chế và tái sử dụng. Lượng nhỏ dung môi không tinh khiết (D.M.F và acid formic) sẽ ảnh hưởng đáng kể đến độ nhớt của dung dịch đánh sợi và ảnh hưởng đến độ trắng và độ bền của sợi
- D.M.F được dùng rộng rãi để trong đánh sợi khô.

2. Sơn Polyurethane
- D.M.F được dùng làm dung môi cho sơn PU, trong quá trình đông tụ PU được hoà tan bằng D.M.F tinh khiết. Nếu là sơn quét dung dịch được pha loãng bằng các chất pha loãng thích hợp.
3. Màng nylon
- Làm tăng tính co dãn của màng nylon
4. Dung môi cho vecni cách điện
- Do D.M.F có nhiệt độ sôi cao và khả năng hoà tan tốt nên rất thích hợp cho sản xuất vecni cách điện có nhựa polyamide, nhựa PU. Các vecni này cực kỳ kháng nhiệt và chống ăn mòn.
5. Chất làm sạch khí
- Vì D.M.F là một dung môi hoà tan mạnh các loại Hydrocacbon và khí xác định. Nó được dùng để lấy đi :
* Khí Acetylene từ hơi khí Ethylene
* Butadiene
* HCl,H2S và SO2 khỏi hỗn hợp khí có CO
6. Chất trích ly
- Dùng D.M.F và hỗn hợp dung môi có D.M.F để tinh chế dịch trích ly các Hydrocacbon thơm. Nó cũng được dùng để ly trích các hợp chất hữu cơ, các sản phẩm tự nhiên, các chất tinh khiết từ hỗn hợp.
http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com
7. Dung môi để điện giải
- Vì D.M.F tinh khiết có hằng số điện môi cao nên nó có thể hoà tan nhiều loại muối, duy trì dung dịch có độ nhớt thấp trong giới hạn nhiệt độ rộng, điều này cực kỳ có ích cho điện phân.
8. Dùng D.M.F trong công nghiệp tái chế và tinh khiết
- Hỗn hợp D.M.F và nước, D.M.F và cồn cho kết quả tốt trong quá trình tái chế, đặc biệt đối với các hợp chất dị vòng và hợp chất thơm.
- D.M.F được dùng để tinh chế và tái chế thuốc nhuộm, chất tăng trắng nhờ hiệu ứng quang học và màu.D.M.F cũng là một thành phần trong điều chế màu
9. Làm môi trường phản ứng
- D.M.F hoà tan nhiều hợp chất vô cơ và hữu cơ, do đó nó được dùng làm môi trường cho các phản ứng hữu cơ. Nó cũng là chất xúc tác cho phản ứng.
10. Nguyên liệu để tổng hợp
- D.M.F là nguyên liệu để tổng hợp :
* Aldehyde
* D.M.F Acetate
* Amide
* Amine
* Ester



Name : Trần Hưng Cường (Mr.) called W.C
EMAIL: sapa_chemicals@yahoo.com
Add : 450 Lý Thái Tổ Street - District 10 - Hồ chí minh city - ViệtNam.
Tel : +84909919331
skye : sapa_chemicals
yahoo: sapa_chemicals

CHẤT LÀM KHÔ MÀNG SƠN, Drier for Alkyd Resins


XÚC TIẾN KIM LOẠI - CHẤT LÀM KHÔ MÀNG SƠN

Chất xúc tiến kim loại là muối của kim loại chuyển tiếp như : Cobalt, chì, mangan, ceri….và các acid như : naphthenic, lenoleic, octonic…. hoà tan tốt trong po. Loại xúc tác này thường dùng chung với các chất khơi mào dạng hydroperoxit( MEKP,HCH) naphthenic- cobalt là loại thông dụng nhất thường dùng với lượng 0,002-0,02% cobalt kim loại so với nhựa .
1. Các kim loại làm khô
- Các kim loại làm khô quan trọng nhất là : Co, chì, cerium, zirconium, canxi và kẽm. Các kim loại làm khô chủ yếu hoạt động như chất oxy hoá hoặc chất xúc tác trùng hợp. Có sự khác nhau rất lớn về hoạt động của các kim loại làm khô, có thể dùng kết hợp các chất làm khô để thu được tính năng làm khô tối ưu.
http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com
- Các kim loại thúc đẩy sự oxy hoá được gọi là chất làm khô hoạt động như : Co, Mn. Còn các kim loại xúc tác quá trình trùng hợp được gọi là chất làm khô phụ trợ như : Chì, Ca, Kẽm, Zirconium. Mỗi loại kim loại làm khô có các tính chất và đặc trưng riêng
a. Chì (Pb 32%)
- Chì là chất xúc tiến phụ trợ quan trọng nhất. Nó được dùng kết hợp với chất làm khô hoạt động Co. Chì thúc đẩy hoàn toàn quá trình làm khô bởi tác dụng trùng hợp
- Lượng dùng : 0,2-1 % trên khối lượng chất nhựa (alkyd)
- Hiện nay, lượng chì cho phép dùng trong sơn gia dụng đến 0,86%. Nhưng ngày nay có xu hướng dùng hỗn hợp Ca va Zirconium thay thế cho chì.
- Chì được sử dụng với chất làm khô hoạt động/ chất làm khô bề mặt để xúc tiến độ rắn chắc qua quá trình làm khô hoàn toàn màng, không ảnh hưởng đến độ mềm dẻo của màng sơn. Thường dùng thêm lựơng nhỏ Ca kết hợp với chì
http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com
- Chì không được dùng trong sơn aluminium vì nó sẽ khử hiệu ứng leafing và trong sơn chống khối nữa
b.Cobalt Oatoate( Co 10%)
- Cobalt là chất làm khô hoạt động nhất vì nó làm khô màng bằng sự oxy hoá. Co thường dùng kết hợp với chì để tác dụng làm khô hoàn toàn tốt.
- Trong sơn sấy, lượng Co được dùng từ 0.005-0.2% / khối lựơng nhựa. Nó cũng được dùng làm chất làm khô cho mực in và vecni.
c.Managanse Octoate (Mn 10%)
- Mn hoạt hoá sự oxy hoá và sự trùng hợp , tạo ra bề mặt khô hoàn toàn. Khi kết hợp với chì, Mn có thể thay thế một phần Co. Mn tạo cho lớp sơn hoàn thiện rắn chắc và bền. Nó cũng được dùng trong sơn sấy.
http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com
- Lượng Mn được dùng từ 0.05-0.2 % kết hợp với chì hoặc Zirconium và Co.
d. Calcium Octoate (Ca 5%, 10%)
- Ca là chất làm khô phụ trợ. Một mình nó không có tác dụng làm khô. Khi kết hợp với Co/Mn, Ca có thể thay thế cho chì được dùng trong sơn sấy. Ca cũng được dùng trong sơn sấy. Ca cũng đựơc dùng để ổn định chì trong những lớp sơn nhạy cảm với nứơc hoặc những sơn có acid tự do như Alkyd có giá trị pH cao.
- Lượng dùng từ : 0.02-0.2% trên khối lượng nhựa.
f.Zirconium Octoate (Zir 12 %)
http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com
- Là chất làm khô phụ trợ kết hợp với Co/Mn và là chất thay thế hữu hiệu cho chì. Độ bóng, màu sắc,thời gian khô, tính mềm dẻo và các đặc tính bề mặt khác đều đựơc cải thiện.
- Lượng dùng là :0.03-0.2% trên khối lượng nhựa.
- Zircinium ở dạng cô đặc hoạt động như chất làm khô phụ trợ cho sơn, mực in có độ nhớtcao. Zirconium không thực hiện tốt chức năng dưới điều kiện làm khô bất lợi như nhịêt độ thấp và độ ẩm cao. Khi kết hợp với Ca, Zir tạo được thời gian khô thích hợp và lớp sơn hoàn thiện ít nhạy cảm.


Drier for Alkyd Resins

Reports on a comprehensive study of the effects of different driers on film properties of alkyd resin. The driers selected for study were calcium naphthanate and the octoates of cobalt, manganese, lead and zirconium. The properties studied were hardness, adhesion, flexibility, film formation, skinning tendency, water and acid resistance, viscosity and drying time. Concludes that driers not only dry coatings (paints, varnishes, resigns, inks) but have significant effect on the film properties. Infers that a combination of manganese, lead and zirconium can be used as the most promising drier system for better coating properties. http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com



EMAIL: sapa_chemicals@yahoo.com

Name : Trần Hưng Cường (Mr.) called W.C
Add : 450 Lý Thái Tổ Street - District 10 - Hồ chí minh city - ViệtNam.
Tel : +84909919331 //
+84907919331
skye : sapa_chemicals
yahoo: sapa_chemicals

Thứ Năm, 16 tháng 4, 2009

LƯU HUỲNH, SULFUR, S 99,99%


LƯU HUỲNH, sulfur ( LUMP, PASTILE, FLAKES, POWDER )

Lưu huỳnh là nguyên tố hóa học trong bảng tuần hoàn có ký hiệu S và số nguyên tử 16. Nó là một phi kim phổ biến, không mùi, không vị, nhiều hóa trị. Lưu huỳnh, trong dạng gốc của nó là chất rắn kết tinh màu vàng chanh. Trong tự nhiên, nó có thể tìm thấy ở dạng đơn chất hay trong các khoáng chất sulfua và sulfat. Nó là một nguyên tố thiết yếu cho sự sống và được tìm thấy trong hai axít amin. Sử dụng thương mại của nó chủ yếu trong các phân bón nhưng cũng được dùng rộng rãi trong thuốc súng, diêm, thuốc trừ sâu và thuốc diệt nấm. http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com

Các đặc trưng nổi bật
Burning-sulfur.png Ở nhiệt độ phòng, lưu huỳnh là một chất rắn xốp màu vàng nhạt. Mặc dù lưu huỳnh không được ưa thích do mùi của nó - thường xuyên bị so sánh với mùi trứng ung - mùi này thực ra là đặc trưng của sulfua hiđrô (H2S); còn lưu huỳnh đơn chất không có mùi. Nó cháy với ngọn lửa màu xanh lam và tỏa ra điôxít lưu huỳnh, với mùi ngột ngạt dị thường. Lưu huỳnh không hòa tan trong nước nhưng hòa tan trong đisulfua cacbon và các dung môi không phân cực khác. Các trạng thái ôxi hóa phổ biến của nó là -2, +2, +4 và +6. Lưu huỳnh tạo thành các hợp chất ổn định với gần như mọi nguyên tố, ngoại trừ các khí trơ.
Lưu huỳnh trong trạng thái rắn thông thường tồn tại như là các phân tử vòng dạng vòng hoa S8. Lưu huỳnh có nhiều thù hình bên cạnh S8. Loại một nguyên tử từ vòng sẽ là S7, đây là nguyên nhân cho màu vàng đặc trưng của lưu huỳnh. Nhiều vòng khác cũng được điều chế ra, bao gồm S12 và S18. Trái lại, nguyên tố ôxy cùng phân nhóm nhưng nhẹ hơn về cơ bản chỉ tồn tại trong hai dạng cơ bản có ý nghĩa hóa học là: O2 và O3. Selen, nguyên tố nặng hơn cùng phân nhóm với lưu huỳnh có thể tạo ra các vòng nhưng thông thường nó nằm trong chuỗi polyme. http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com

Tinh thể lưu huỳnh rất phức tạp. Phụ thuộc vào các điều kiện cụ thể, các thù hình của lưu huỳnh tạo thành vài cấu trúc tinh thể khác nhau, với các dạng hình thoi và xiên đơn S8 là các dạng được nghiên cứu kỹ nhất.
Một tính chất đáng chú ý là độ nhớt của lưu huỳnh nóng chảy, không giống như phần lớn các chất lỏng khác, tăng lên theo nhiệt độ do sự hình thành các chuỗi polyme. Tuy nhiên, sau khi đã đạt được một khoảng nhiệt độ nhất định thì độ nhớt lại bị giảm do đã đủ năng lượng để phá vỡ chuỗi polyme.
Lưu huỳnh vô định hình hay "dẻo" có thể được tạo ra khi làm nguội nhanh lưu huỳnh nóng chảy. Các nghiên cứu tinh thể bằng tia X chỉ ra rằng dạng vô định hình có thể có cấu trúc xoắn ốc với 8 nguyên tử trên một vòng. Dạng này là ổn định động ở nhiệt độ phòng và dần dần chuyển ngược thành dạng kết tinh. Tiến trình này diễn ra trong vòng vài giờ hay vài ngày nhưng có thể tăng tốc nhờ xúc tác.
Ứng dụng
Lưu huỳnh có nhiều ứng dụng công nghiệp. Thông qua dẫn xuất chính của nó là axít sulfuric (H2SO4) thì lưu huỳnh được đánh giá như là một trong các nguyên tố quan trọng nhất được sử dụng như là nguyên liệu công nghiệp. Nó là quan trọng bậc nhất đối với mọi lĩnh vực của nền kinh tế thế giới.
Sản xuất axít sulfuric là sử dụng cuối chủ yếu của lưu huỳnh, và việc tiêu thụ axít sulfuric được coi như một trong các chỉ số tốt nhất về sự phát triển công nghiệp của một quốc gia. Axít sulfuric được sản xuất hàng năm ở Hoa Kỳ nhiều hơn bất kỳ hóa chất công nghiệp nào khác.
Lưu huỳnh cũng được sử dụng trong ắc quy, bột giặt, lưu hóa cao su, thuốc diệt nấm và trong sản xuất các phân bón phốtphat. Các sulfit được sử dụng để làm trắng giấy và làm chất bảo quản trong rượu vang và làm khô hoa quả. Do bản chất dễ cháy của nó, lưu huỳnh cũng được dùng trong các loại diêm, thuốc súng và pháo hoa. Các thiosulfat natri và amôni được sử dụng như là các tác nhân cố định trong nhiếp ảnh. Sulfat magiê, được biết dưới tên gọi muối Epsom có thể dùng như thuốc nhuận tràng, chất bổ sung cho các bình ngâm (xử lý hóa học), tác nhân làm tróc vỏ cây, hay để bổ sung magiê cho cây trồng.
Cuối thế kỷ 18, các nhà sản xuất đồ gỗ sử dụng lưu huỳnh nóng chảy để tạo ra các lớp khảm trang trí trong các sản phẩm của họ. Do điôxít lưu huỳnh được tạo ra trong quá chình nung chảy lưu huỳnh nên các đồ gỗ với lớp khảm lưu huỳnh đã bị loại bỏ rất nhanh. http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com

Vai trò sinh học
Các axít amin cystein và methionin chứa lưu huỳnh, cũng như mọi polypeptid, protein và enzym có chứa các axít amin này. Điều đó làm cho lưu huỳnh trở thành thành phần cần thiết cho mọi tế bào. Các liên kết đisulfua giữa các polypeptid là rất quan trọng trong sự tạo thành và cấu trúc của protein. Homocystein và taurin cũng là các axít amin chứa lưu huỳnh nhưng nhưng không được mã hóa bởi ADN và chúng cũng không phải là một phần của cấu trúc sơ cấp của các protein. Một số dạng vi khuẩn sử dụng sulfua hiđrô (H2S) thay vào vị trí của nước như là chất cung cấp electron trong các tiến trình thô sơ tương tự như quang hợp. Thực vật cũng hấp thụ lưu huỳnh từ đất trong dạng các ion sulfat. Lưu huỳnh vô cơ tạo thành một phần của các cụm sắt-lưu huỳnh, và lưu huỳnh là chất cầu nối trong vị trí CuA của cytochrom c ôxidaza. Lưu huỳnh là thành phần quan trọng của coenzym A
Ảnh hưởng môi trường
Sự đốt cháy than và dầu mỏ trong công nghiệp và các nhà máy điện giải phóng ra một lượng lớn điôxít lưu huỳnh SO2, nó sẽ phản ứng với hơi nước và ôxy có trong khí quyển để tạo ra axít sulfuric. Đây là nguyên nhân của các trận mưa axít và làm giảm pH của đất cũng như các khu vực chứa nước ngọt, tạo ra những tổn thất đáng kể cho môi trường tự nhiên và gây ra phong hóa hóa học đối với các công trình xây dựng và kiến trúc. Các tiêu chuẩn về nhiên liệu đã thắt chặt các chỉ tiêu về hàm lượng lưu huỳnh trong các nhiên liệu hóa thạch để giảm thiểu sự hình thành của mưa axít.Lưu huỳnh được tách ra từ các nhiên liệu này sau đó sẽ được làm tinh khiết và tạo ra một phần lớn của sản lượng lưu huỳnh được sản xuất.
Lịch sử
SulfurCrystal.jpg Lưu huỳnh (tiếng Phạn, sulvere; tiếng Latinh sulpur) đã được biết đến từ thời cổ đại, và nó được nhắc đến trong Pentateuch của Kinh Thánh (Sáng thế ký). Các phiên dịch ra tiếng Anh của nó đều coi lưu huỳnh như là "brimstone", tạo ra tên gọi của các bài thuyết giáo 'Fire and brimstone', trong đó địa ngục và sự quở trách của Thượng đế đối với những kẻ có tội được nhấn mạnh. Nó có từ phần của Kinh Thánh cho rằng địa ngục có mùi của lưu huỳnh.
Trong tiếng Ả Rập sufra có nghĩa là màu vàng, có từ màu sáng của dạng tự nhiên của lưu huỳnh và người ta cho rằng nó là nguyên từ của các tên gọi để chỉ lưu huỳnh trong ngôn ngữ của một số quốc gia châu Âu hiện nay.
Homer đã đề cập tới "lưu huỳnh ngăn ngừa các loài phá hoại" từ thế kỷ 9 TCN và năm 424 TCN thì bộ tộc ở Boeotia đã tiêu hủy các bức tường của thành phố bằng cách đốt hỗn hợp than, lưu huỳnh và hắc ín dưới chân tường. Vào khoảng thế kỷ 12, người Trung Quốc đã phát minh ra thuốc súng, nó là hỗn hợp của nitrat kali (KNO3), cacbon và lưu huỳnh. Các nhà giả kim thuật ban đầu cho lưu huỳnh ký hiệu giả kim thuật là một tam giác ở đỉnh của chữ thập. Vào những năm cuối thập niên 1770, Antoine Lavoisier đã củng cố niềm tin của cộng đồng khoa học khi cho rằng lưu huỳnh là một nguyên tố chứ không phải hợp chất.
Năm 1867 lưu huỳnh đã được phát hiện trong các mỏ ở Louisiana và Texas. Lớp nằm trên của nó là cát chảy đã ngăn cản các hoạt động khai thác thông thường. Vì thế quy trình Frasch đã nảy sinh và được thực hiện.
Sự phổ biến http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com

SulfurUSGOV.jpg NZ sulfur NI.jpg Wai-o-tapu, New Zealand.]]
Lưu huỳnh dạng đơn chất có thể tìm thấy ở gần các suối nước nóng và các khu vực núi lửa tại nhiều nơi trên thế giới, đặc biệt là dọc theo vành đai lửa Thái Bình Dương. Các nguồn phổ biến này là cơ sở cho tên gọi truyền thống brimstone, do lưu huỳnh có thể tìm thấy gần các miệng núi lửa. Các trầm tích núi lửa hiện được khai thác tại Indonesia, Chile và Nhật Bản.
Các mỏ đáng kể của lưu huỳnh đơn chất cũng tồn tại trong các mỏ muối dọc theo bờ biển thuộc vịnh Mexico và trong các evaporit ở Đông Âu và Tây Á. Lưu huỳnh trong các mỏ này được cho là có được nhờ hoạt động của các vi khuẩn kỵ khí đối với các khoáng chất sulfat, đặc biệt là thạch cao. Các mỏ này là nền tảng của sản xuất lưu huỳnh công nghiệp tại Hoa Kỳ, Ba Lan, Nga, Turkmenistan và Ukraina.
Lưu huỳnh thu được từ dầu mỏ, khí đốt và cát dầu Athabasca đã trở thành sự cung cấp lớn trên thị trường, với các kho dự trữ lớn dọc theo Alberta.
AlbertaSulfurAtVancouverBC.jpg, được chuẩn bị giao hàng tại Vancouver, B. C..]] Các hợp chất chứa lưu huỳnh nguồn gốc tự nhiên phổ biến nhất là các sulfua kim loại, như pyrit (sulfua sắt), cinnabar hay chu sa (sulfua thủy ngân), galen (sulfua chì), sphalerit (sulfua kẽm) và stibnit (sulfua antimon) cũng như các sulfat kim loại, như thạch cao (sulfat canxi), alunit (sulfat nhôm kali) và barit (sulfat bari). Sulfua hiđrô là một chất khí tạo ra mùi đặc trưng của trứng thối. Trong tự nhiên, nó có trong các phun trào núi lửa, chẳng hạn từ các miệng phun thủy nhiệt, và do tác động của vi khuẩn với các hợp chất hữu cơ chứa lưu huỳnh khi bị phân hủy.
Các màu đặc trưng của các vệ tinh núi lửa của sao Mộc, như Io, là do các dạng khác nhau của lưu huỳnh gây ra (nóng chảy, rắn hay khí). Các khu vực sẫm màu trên Mặt Trăng gần hố Aristarchus có thể là mỏ lưu huỳnh. Lưu huỳnh cũng tồn tại trong nhiều loại thiên thạch.
Hợp chất
Sulfua hiđrô có mùi đặc trưng của trứng thối. Khi hòa tan trong nước nó có tính axít và phản ứng với nhiều kim loại để tạo ra các sulfua kim loại. Các sulfua kim loại khá phổ biến, đặc biệt là của sắt. Sulfua sắt còn được gọi là pyrit cũng như khoáng sản màu vàng. Một điều thú vị là pyrit có các tính chất bán dẫn *. Galen là sulfua chì tự nhiên, là chất bán dẫn đầu tiên được phát hiện và nó đã từng được dùng làm bộ chỉnh lưu tín hiệu trong các "râu mèo" của các radio tinh thể đầu tiên.
Nhiều hợp chất hữu cơ của lưu huỳnh với mùi khó ngửi như các êtyl và mêtyl mecaptan được dùng làm chất tạo mùi cho khí đốt nhằm dễ dàng phát hiện rò rỉ. Mùi của tỏi và "mùi hôi như chồn hôi" cũng do các hợp chất hữu cơ chứa lưu huỳnh gây ra. Tuy nhiên, không phải mọi hợp chất hữu cơ chứa lưu huỳnh đều có mùi khó ngửi, chẳng hạn, terpen-một hợp chất chứa lưu huỳnh là tác nhân tạo ra mùi thơm đặc trưng của quả bưởi chùm.
Nitrua lưu huỳnh polyme hóa có các tính chất của kim loại mặc dù nó không chứa bất kỳ một nguyên tử kim loại nào. Hợp chất này cũng có các tính chất điện và quang học bất thường. Polyme này có thể tạo ra từ têtranitrua têtra lưu huỳnh S4N4.
Các hợp chất quan trọng khác của lưu huỳnh còn có:
Vô cơ:
Các sulfua (S2-) là các hợp chất đơn giản nhất của lưu huỳnh với các nguyên tố hóa học khác.
Các sulfit (SO32-), các muối của axít sulfurơ, H2SO3, được tạo ra bằng cách hòa tan SO2 trong nước. Axít sulfurơ và các sulfit tương ứng là các chất khử tương đối mạnh. Các hợp chất dẫn xuất khác từ SO2 còn có các ion pyrosulfit hay mêtabisulfit (S2O52−).
Các sulfat (SO42-), các muối của axít sulfuric. Axít sulfuric cũng phản ứng với SO3 trong các tỷ lệ đẳng phân tử gam để tạo ra axít pyrosulfuric (H2S2O7).
Các thiôsulfat (đôi khi được gọi là thiôsulfit hay "hyposulfit") (S2O32−)- như thiôsulfat natri được dùng như các chất cố định trong nhiếp ảnh (trong vai trò của các chất khử) và thiôsulfat amôni đã được phát hiện như là chất thay thế cho các xyanua trong lọc quặng vàng *.
Đithiônit natri, Na2S2O4 tạo ra từ axít hyposulfurơ/đithiônơ - là một chất khử mạnh.
Đithiônat natri (Na2S2O6)
Các axít polythiônic (H2SnO6), trong đó n dao động từ 3 đến 80.
Axít perôxymônôsulfuric (H2SO5) và axít perôxyđisulfuric (H2S2O8)-được điều chế từ phản ứng của SO3 hay H2SO4 với H2O2 đậm đặc một cách tương ứng.
Các polisulfua natri (Na2Sx)
Hexaflorua lưu huỳnh, SF6, một tác nhân đẩy nặng, dạng khí, không phản ứng và không độc
Têtranitrua têtra lưu huỳnh S4N4.
Các thiôxyanat là các hợp chất chứa ion thiôxyanat, SCN-. Liên quan đến các ion này là thiôxyanôgen, (SCN)2.
Hữu cơ:
đimêtyl sulfôniôprôpiônat (DMSP; (CH3 )2S+CH2CH2COO-) là thành phần trung tâm của chu trình lưu huỳnh hữu cơ trong đại dương.
Các thiôête là các phân tử với công thức tổng quát dạng R-S-R′, trong đó R và R′ là các nhóm hữu cơ. Các chất này là sự tương đương của các ête (lưu huỳnh thay thế ôxy).
Các thiol (hay mecaptan) là các phân tử với nhóm chức -SH. Chúng là các chất tương đương với rượu (lưu huỳnh thay thế ôxy).
Các thiolat có nhóm chức -S- gắn vào. Chúng là các chất tương đương của các ankôxít (lưu huỳnh thay thế ôxy).
Sulfôxít là các phân tử với nhóm chức R-S(=O)-R′, trong đó R và R′ là các nhóm hữu cơ. Một chất phổ biến trong số các sulfôxít là DMSO.
Sulfon là các phân tử với nhóm chức R-S(=O)-R′, trong đó R và R′ là các nhóm hữu cơ.
Thuốc thử Lawesson là thuốc thử hóa học có thể lấy ôxy từ các chất hữu cơ khác và thay nó bằng lưu huỳnh.
Naptalen-1,8-điyl 1,3,2,4-đithiađiphốtphetan 2,4-đisulfua
Đồng vị
Lưu huỳnh có 18 đồng vị, trong đó 4 đồng vị ổn định: S32 (95,02%), S33 (0,75%), S34 (4,21%) và S36 (0,02%). Các đồng vị khác và S35 là các đồng vị phóng xạ và có chu kỳ bán rã ngắn. S35 được tạo ra từ sự bắn phá của các tia vũ trụ với Ar40 trong khí quyển Trái Đất. Nó có chu kỳ bán rã là 87 ngày.
Khi các khoáng chất sulfua theo nước mưa xuống đất thì cân bằng đồng vị giữa các thể rắn và các thể lỏng có thể sinh ra sự sai biệt nhỏ trong các giá trị của dS34 của các khoáng chất cùng nguồn gốc. Sự khác biệt trong các khoáng chất có thể sử dụng để ước tính nhiệt độ của cân bằng. dC13 và dS34 của các cacbonat cùng tồn tại và các sulfua có thể sử dụng để xác định pH và độ khó giữ ôxy của các chất lỏng mang theo quặng trong quá trình hình thành quặng. http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com

Trong phần lớn các hệ sinh thái rừng, sulfat chủ yếu thu được từ khí quyển hay sự phong hóa của các quặng khoáng sản và các chất đã thoát hơi nước cũng cung cấp một lượng lưu huỳnh nhỏ. Lưu huỳnh với thành phần đồng vị đặc biệt được sử dụng để xác định các nguồn ô nhiễm, và lưu huỳnh được làm giàu được thêm vào dưới dạng dấu vết trong các nghiên cứu thủy học. Các khác biệt trong độ phổ biến tự nhiên cũng được sử dụng trong các hệ thống mà trong đó có các biến đổi đủ lớn của S34 trong thành phần của hệ sinh thái.
Phòng ngừa
Các chất như đisulfua cacbon, ôxysulfua cacbon, sulfua hiđrô và điôxít lưu huỳnh cần phải rất cẩn thận khi tiếp xúc.
Mặc dù điôxít lưu huỳnh là khá an toàn để sử dụng như là phụ gia thực phẩm với một lượng nhỏ, nhưng khi ở nồng độ cao nó phản ứng với hơi ẩm để tạo ra axít sulfurơ mà với một lượng đủ lớn có thể gây tổn thương cho phổi, mắt hay các cơ quan khác. Trong các sinh vật không có phổi như côn trùng hay thực vật thì nó ngăn cản sự hô hấp.
Sulfua hiđrô là rất độc (nó độc hơn nhiều so với xyanua). Mặc dù ban đầu nó có mùi, nhưng nó nhanh chóng làm mất cảm giác mùi, vì thế các nạn nhân có thể không biết được sự hiện diện của nó cho đến khi đã quá muộn.
Xem thêm
Chu trình lưu huỳnh
Liên kết đisulfua
Sulfoni S+, S+R3
Tham khảo
Phòng thí nghiệm quốc gia Los Alamos, Hoa Kỳ-Lưu huỳnh
R. Steudel (ed.): Elemental Sulfur and Sulfur-Rich Compounds (phần I & II), Topics in Current Chemistry Vol. 230 & 231, Springer, Berlin 2003.
Liên kết ngoài
Biểu đồ pha của lưu huỳnh.
WebElements.com-Lưu huỳnh
http:// http://www.sapacovn.com/
http://www.thchemicals.blogspot.com/



Name : Trần Hưng Cường (Mr.) called W.CƯỜNG
Email: sapa_chemicals@yahoo.com
Add : 450 Lý Thái Tổ Street - District 10 - Hồ chí minh city - ViệtNam.
Tel : +84909919331 ; +84907919331
skye : sapa_chemicals
yahoo: sapa_chemicals

GLYCOL BASE: PROPYLENE GLYCOL( PG), MONOETHYLENE GLYCOL( MEG), DIETHYLENE GLYCOL(DEG), ETHYLENE GLYCOL (EG), MONOPROPYLENEGLYCOL (MPG)

DiEthylene Glycol ( D.E.G.), Ethylene Glycol ( E.G. / M.E.G. ), MonoEthylene Glycol ( M.E.G. ), P.G. ( USP/EP Grade), P.G. industrial Grade, Propylene Glycol ( USP/EP Grade), Propyleneglycol Industrial Grade, Tri Ethylene glycol ( T.E.G. )




Glycol là những hợp chất béo vô cơ có hai nhóm OH trong mỗi phân tử.
- Glycol giống như nước, nó là chất lỏng trong suốt, không màu, không mùi. Tuy nhiên độ nhớt lớn hơn nước ở bất kỳ nhiệt độ nào và nhiệt độ sôi cao hơn nhiều so với nước.
- Glycol là dung môi cho nhiều hợp chất vô cơ và tan hoàn toàn trong nước, chúng có thể phản ứng hoá học trên một hoặc cả hai nhóm OH vì thế chúng là chất hoá học trung gian quan trọng.
- Vì Glycol có tính chất hoá học trong phạm vi rộng nên chúng ta cần phải xác định loại glycol nào dùng trong những ứng dụng cụ thể.Các sản phẩm của glycol gồm có : Ethylene glycol, Diethylene glycol, Propylene glycol, polypropylene glycol, Polyethylene glycol.
- Ở điều kiện thường, glycols là chất lỏng và dễ vận chuyển bằng container. Nhiệt độ sôi cao và nhiệt độ đông thấp nên glycol có thể bảo quản trong điều kiện khí hậu rộng, thường không cần gia nhiệt hoặc cách li đặc biệt, không cần thiết thông hơi vì áp suất hơi tương đối thấp. Glycols được bơm và đo dễ dàng trong các quá trình công nghiệp.
http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com
- Glycols có vai trong quan trọng trong công nghiệp tuỳ vào phạm vi ứng dụng thực tế. Nó được ứng dụng trong công nghiệp nước giải khát, chất dẻo chịu nhiệt, vải, sơn nhựa latex, chất tẩy các bề mặt bằng men và thuỷ tinh, chất chống đông và chất làm nguội trong động cơ xe hơi, chất lỏng truyền nhiệt, khí tự nhiên, chất ưa nước, keo dán, nhựa tổng hợp, thuốc trừ sâu, mực in, mỹ phẩm và chất hút khí. Tất cả những ứng dụng này đều dùng Glycols làm thành phần chính của sản phẩm hoặc làm chất phụ trợ.

B.MONOETHYLENE GLYCOL
1.Giới thiệu
- M.E.G là chất lỏng có nhiệt độ sôi cao, độ bay hơi thấp, có thể trộn lẫn với nước. Nó được dùng làm dung môi và là nguyên liệu ban đầu cho quá trình tổng hợp
- Tên hoá học : 1,2 – Ethanediol, Ethylene Glycol
- Công thức hoá học :HOCH2-CH2OH
- Công thức phân tử :C2H6O2
- Nhiệt độ sôi : 196-1990C
- Nhiệt độ đông : -12.30C
- Tốc độ bay hơi (Ether =1): 2500
2.Tính chất :
- M.E.G là chất lỏng trong suốt, tốc độ bay hơi thấp, hút ẩm, nhiệt độ sôi cao, có mùi nhẹ. Nó có thể trộn lẫn với nước, alcohol, polyhydric alcohols, glycol ether, acetone, cyclohexanone. Tan trong dầu động vật, dầu thực vật và các dẫn xuất dầu mỏ, không tan hoặc tan hạn chế trong esters, hydrocacbon thơm, hydrocacbon béo. MEG hút ẩm hơn glycerol.
- Mặc dù MEG khan không ăn mòn các kim loại thường dưới điều kiện thông thương nhưng nó lại phản ứng ăn mòn ở nhiệt độ cao, đặc biệt nó sẽ hút ẩm khi có nước. Dướic các điều kiện này, MEG có thể bị oxy hoá và có phản ứng acid trong dung dịch có nước vì thế phải thêm chất ức chế để ngăn chặn sự ăn mòn.
http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com
- MEG tạo thành hỗn hợp đồng sôi nhị phân với nhiều dung môi
- Các dung môi không tạo thành hỗn hợp đồng sôi với MEG là butanol, benzene, phenol, Hexane, Cyclohexanol, Ethyl và Butyl Acetate,Hexanol.
- Khả năng hoà tan
+ M.E.G có thể hoà tan tự do với :
- Nước
- Alcohol như Methanol, ethanol, propanol, butanol.
- Glycerol
- Propylene Glycol
- Glycol ether
- Glycol ester
-Ketones như Cyclohexanone và Acetone
- Phenol
- Ethanolamine
- M.E.G hoà tan nhanh
- Urea
- Iodine
- Acid vô cơ, muối và bazơ
- Vài vô chất tự nhiên như Gelatine
+ M.E.G hoà tan ít hoặc không hoà tan
- Ether
http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com
- Hydrocacbon thơm như : Benzen, Toluene, Xylene.
- Hydrocacbon béo
- Dẫn xuất dầu mỏ
-Dầu động vật và thực vật
- Carbon disulfide
-Cellulose Esters và Ethers
-Cao su Clo hoá
- Chất dẻo và sáp
3.Ứng dụng
- M.E.G có các tính chất như : làm giảm nhiệt độ đông như hệ nước, khả năng hút ẩm, bền hoá học, khả năng phản ứng với Ethylene oxide và các acid khác. Vì thế nó được dùng nhiều trong các ứng dụng :
a.Chất trung gian để sản xuất nhựa :
· Nhựa alkyd : Quá trình ester hoá của MEG với polyhydric acid tạo ra polyester. Sau đó, Polyester này được biến đối với cồn hoặc dầu làm khô để dùng làm nguyên liệu cho ngành sơn. Phản ứng giữa M.E.G và acid dihydric cacboxylic hoặc các anhydride đặc biệt như : Phthalic anhydride tạo ra alkyd resins, đây là nguyên liệu sản xuất cao su tổng hợp, keo dán hoặc các loại sơn phủ bề mặt.
· Các loại nhựa polyester (dạng sợi, màng polyester và nhựa polyethylene terephthalate (PET).
- Nhựa polyester dùng trong sản xuất tàu thuyền, nguyên liệu ngành xây dựng, thân máy bay, xe hơi, dệt và bao bì
http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com
- Sợi polyester thường được dùng trong ngành dệt như quần áo và thảm
- Màng Poliester thường được dùng trong bao bì và màng co trong hàng hoá tiêu dùng, sản xuất băng video, đĩa vi tính.
- Nhựa ( polyethylene terephthalate) dùng để sản xuất chai đựng nước uống (chai pet), thùng chứa và bao bì thực phẩm.
b.Chất chống đông
- Chất chống đông làm mát dùng trong động cơ xe máy, máy bay và đường băng.
- Dung dịch tải nhiệt ( các bình nén khí, gia nhiệt, thông gió, máy lạnh)
- Chất chống đông và làm mát động cơ xe hơi
- Dùng trong các công thức pha chế hệ nước như keo dán, sơn latex, các nhựa tương tự như nhựa đường
c.Chất giữ ẩm
- Dùng làm chất giữ ẩm trong công nghiệp thuốc lá và xử lý các nút bần, hồ dán, keo dán, giấy, thuộc da.
d.Các ứng dụng khác:
- Sản xuất chất ức chế ăn mòn và chất chống đông dùng cho máy móc được làm lạnh bằng nước và các nhà máy làm lạnh
http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com
- Khi trộn với nước và chất kiềm hãm được dùng trong chất sinh hàn. Ưu điểm của nó là không ăn mòn.
http://www.thchemicals.blogspot.com, http://thchemicals.com, http://dungmoi.com
- Dung môi hoà tan thuốc nhuộm trong ngành dệt và thuộc da.
- M.E.G có thể hoà tan tốt thuốc nhuộm nên nó được trong quá trình nhuộm màu và hoàn thiện gỗ, chỉ được dùng trong trường hợp độ bay hơi thấp.
- Làm nguyên liệu ban đầu trong sản xuất polyol bắt nguồn từ Ethylene oxid, các polyol này được dùng làm chất bôi trơn hoặc phản ứng với isocyanates trong sản xuất polyurethanes.Không được dùng M.E.G trong thực phẩm và dược.

 --------------------------------------------------------------------------------------------------
MONO ETHYLENE GLYCOL ( MEG)

SYNONYMS:  1,2-Ethanediol; Glycol; MEG; 1,2-Dihydroxyethane; 1,2-Ethandiol; 2-Hydroxyethanol; Athylenglykol (German);

GENERAL DESCRIPTION:
Glycol: any of a class of organic chemicals characterized by having separate two hydroxyl (-OH) groups, contribute to high water solubility, hygroscopicity and reactivity with many organic compounds, on usually linear and aliphatic carbon chain. The general formula is CnH2n(OH)2 or (CH2)n(OH)2. The wider meaning names include diols, dihydric alcohols, and dihydroxy alcohols. Polyethylene glycols and polypropylene glycols are sometimes called polyglycols which are derived by polymerization of ethylene oxide and propylene oxide respectively. Polyethylene glycols are water-soluble at all molecular weights, but polypropylene glycols become increasingly less water-soluble at high molecular weights. Ethylene glycol, HOCH2CH2OH, is the simplest member of the glycol family. Mono-, di- and triethylene glycols are the first three members of a homologous series of dihydroxy alcohols. They are colourless, essentially odourless stable liquids with low viscosities and high boiling points. Ethylene glycol is a colourless, odourless, involatile and hygroscopic liquid with a sweet taste.  It is somewhat viscous liquid; miscible with water; boiling point 198 C, melting point 13 C; soluble in ethanol, acetone, acetic acid, glycerine, pyridine, aldehydes; slightly soluble in ether; insoluble in oil, fat, hydrocarbones. It is prepared commercially by oxidation of ethylene at high temperature in the presence of silver oxide catalyst, followed by hydration of ethylene oxide to yield mono-, with di-, tri-, and tetraethylene glycols as co-products.  The yields of ethylene glycol are depend on pH conditions. The acid-catalyzed condition in the presence of excess water provides the highest yield of monoethylene glycol. Because of its low freezing point, involatility and low corrosive activity, it is widely used in mixtures of automobile antifreeze and engine-cooling liquids. Ethylene glycol has become increasingly important in the plastics industry for the manufacture of polyester fibers and resins, including polyethylene terephthalate, which is used to make plastic bottles for soft drinks (PET bottles). MEG is the raw material in the production of polyester fiber, PET resins, alkyd, and unsaturated polyester. Diethylene glycol, CH2OHCH2OCH2CH2OH, is similar in properties to MEG, but with a higher boiling point, viscosity, and specific gravity. Diethylene glycol is used in the manufacture of unsaturated polyester resins, polyurethanes and plasticizers. It is a water-soluble liquid;  boiling point 245 C; soluble in many organic solvents. It is used as a humectant in the tobacco industry and in the treatment of corks, glue, paper and cellophane. Diethylene glycol (DEG) is derived as a co-product with ethylene glycol and triethylene glycol. The industry generally operates to maximize MEG production. Ethylene glycol is by far the largest volume of the glycol products in a variety of applications. Availability of DEG will depend on demand for derivatives of the primary product, ethylene glycol, rather than on DEG market requirements. Triethylene glycol, HO(C2H4O)3H, is a colourless, odourless, non-volatile, and hygroscopic liquid. It is characterised by two hydroxyl groups along with two ether linkages, which contribute to its high water solubility, hygroscopicity, solvent properties and reactivity with many organic compounds. DEG is used in the synthesis of morpholine and 1,4-dioxane. TEG is displacing diethylene glycol in many of these applications on account of its lower toxicity. TEG finds use as a vinyl plasticizer, as an intermediate in the manufacture of polyester resins and polyols, and as a solvent in many miscellaneous applications. Triethylene glycol (TEG) is derived as a coproduct in the manufacture of ethylene glycol from ethylene oxide, and from "on-purpose" TEG production using diethylene glycol. Some capacities are based on total capacity for ethylene glycols. The main uses for TEG depend upon its hygroscopic properties. Air conditioning systems use TEG as dehumidifiers and, when volatilized, as an air disinfectant for bacteria and virus control. Glycols, having high boiling point and affinity for water, are employed as liquid desiccant for the dehydration of natural gas. The dehydration means the removal of water vapor in refinery tower so that dry hydrocarbon gases can exit from the top of the tower. There are wide range of glycol ethers which have bifunctional nature of ether and alcohol. cellosolves are monoether derivatives of ethylene glycol. They are excellent solvents, having solvent properties of both ethers and alcohols. Glycol family products are versatile compounds used in the fields include;
  • Anti-freezing and anti-icing additive
  • Intermediate in polymer production and chemical reaction
  • Solvent or plasticizer for plastic, lacquer, paint and varnish
  • Hydraulic, brake, thermal exchange fluids and fuel additive
  • Humidifying and plasticizing
  • Dehydrating
  • Coupling printing inks
  • Textile conditioning
  • Solvent for dyes in textile and leather finishing
  • Agricultural formulation
  • General purpose cleaners
  • Explosives manufacture
  • Electrolytic component
  • Humectant
  • Water-based coating
  • Preservative, rust remover, and disinfectant


--> DIETHYLENE GLYCOL
Qui cách :225, 235 kg/drum
Xuất xứ : Arab,Tai wan, Malay
  1. Giới thiệu
- Tên hoá học : Diethylene Glycol
- 2,2- Dihydroxyethyl ether
- CTPT: C4H­­10O3
- Nhiệt độ sôi : 228-2360C
- Nhiệt độ đông : -400C
2.Tính chất
- DEG là chất lỏng trong suốt, bay hơi, hút ẩm, nhiệt độ sôi cao, mùi có thể nhận biết được, vị hơi đắng. Dung dịch pha loãng có vị hơi ngọt. Có thể trộn lẫn với và hút ẩm mạnh như Glycerol.
- D.E.G phản ứng với O­2 không khí tạo thành peroxide
- Hoà tan hoàn toàn với nước ở nhiệt độ phòng.
- Tốc độ bay hơi ( ether =1): >10.000
- Khả năng hoà tan : DEG hoà tan nitrate cellulose, nhựa, nhiều loại thuốc nhuộm.
- Các chất tan hạn chế trong DEG là gelatine, dextrin và casein
- Các chất không tan trong DEG là hydrocacbon thơm và hydrocacbon béo, dầu thực vật và dầu động vật, dầu thông, cellulose acetate, nhựa copal, cao su clo hoá.
3.Ứng dụng
a.Giữ ẩm
- Sấy không khí: DEG có ái lực với nước vì thế nó là chất liệu tốt để khử nước cho khí tự nhiên, loại trừ được hơi ẩm trong các đường truyền và ngăn chặn sự hình thành hydrate hydrocacbon (chất này làm giảm dung tích của đường ống)
- Chất hoá dẻo và hút ẩm cho sợi, giấy, keo dán, hồ dán, coating, nút bần.
b.Chất bôi trơn
- chất trợ mài thuỷ tinh
- Thành phần của chất hồ vải
- Chất trợ nghiền trong sản xuất ximăng
- Chất gở khuôn
c.Chất kết hợp dung môi
- Làm chất ổn định cho chất phân tán dầu có thể hoà tan
- Chất kết hợp cho màu nhuộm và các thành phần trong mực in
d.Dung môi
- Phân tách các hydrocacbon mạch thẳng và mạch vòng
- Mực in, mực viết, mực tàu, mực viết bi, mực in phun (pigment), chât màu cho sơn và thuốc nhuộm (dye)
- DEG hoà tan với nước và nhiều chất vô cơ được dùng làm dung môi và chất kết hợp trong dầu bôi trơn cho ngành dệt, dầu cắt và xà phòng tẩy rửa hoá học
- Dung môi hoà tan thuốc nhuộm và nhựa có trong mực steam-set dùng cho máy in có tốc độ cao
e.Chất chống đông
- Chống đông cho sơn latex
- Dùng trong dung dịch phá băng
- Dùng trong dung dịch tải nhiệt
- f.Hoá chất trung gian
- Nguyên liệu chất hoá dẻo cho bóng NC, sơn sấy và keo dán.
- Sản xuất polyester polyol dùng trong foam urethane
- Sản xuất PU nhiệt dẻo
- Chất nhũ hoá
- Dầu bôi trơn, dầu nhớt.
- Nguyên liêu thô trong sản xuất ester và polyester được dùng làm chất phụ gia của dầu bôi trơn, làm nguyên liệu thô cho sơn, keo dán
- Nguyên liệu ban đầu để sản xuất DEG nitrate (đây là thành phần của thuốc nổ không có khói), nguyên liệu để sản xuất nhựa tổng hợp, nhựa acrylate, methacrylate, urethane


Name : Trần Hưng Cường (Mr.) called W.CƯỜNG
Email: sapa_chemicals@yahoo.com
Add : 450 Lý Thái Tổ Street - District 10 - Hồ chí minh city - ViệtNam.
Tel : +84909919331 //
+84907919331
skye : sapa_chemicals
yahoo: sapa_chemicals







Chia sẻ với bạn bè

CALL ME 0909.919.331 ; 0907.919.331 ! Hãy để lại thông tin và Email của bạn.

Tìm kiếm những "TỪ" mà bạn mong muốn từ Blog này

LIST OF CHEMICALS - Danh mục hóa chất

Người theo dõi - Follow me hereby:

DUNG MOI NGANH SON, MUC IN

DUNG MOI NGANH SON, MUC IN
SOLVENTs 0909919331

(VnMedia) - Hóa chất và các sản phẩm phục vụ đời sống - Một cách nhìn khác



Chúng ta thường nghĩ rằng hoá chất rất độc hại và không nên sử dụng hoặc tiếp xúc với hoá chất. Thế nhưng, cũng cần biết rằng hoá chất cực kỳ hữu dụng và có thể nói, trong thời đại ngày nay, con người không thể sống mà không sử dụng hoá chất và các sản phẩm từ hoá chất. Bài viết này hy vọng sẽ giúp cho người đọc hiểu biết thêm cũng như có một cái nhìn khách quan hơn về hoá chất và cách sử dụng chúng.



Hoá chất có an toàn hay không?

Mọi người thường hiểu “hoá chất” là những sản phẩm làm ra từ các ngành công nghiệp. Thật ra, tất cả đều là “hoá chất”, từ cây cỏ, động vật, đến nước, không khí, muối, tiêu, xăng dầu, nhựa, các sinh tố, thuốc men, các sản phẩm chăm sóc cá nhân và nhà cửa, nước hoa, kim loại, sơn…Do đó, dù từ thiên nhiên hoặc tổng hợp từ công nghiệp, tất cả đều là “hoá chất” và phải tuân thủ các luật lệ về hoá chất.

Đối với hoá chất, thay vì hiểu “an toàn” hay “không an toàn”, nên có khái niệm “nguy cơ”, nghĩa là khả năng xảy ra nguy hiểm hay độc hại trong từng trường hợp cụ thể. Một số các hoá chất có khả năng gây nguy cơ cao ở cả các điều kiện thông thường, hoặc ở những nồng độ rất nhỏ cũng có thể gây hại, sẽ được cân nhắc trong danh sách “hoá chấtcấm sử dụng”., hoặc chỉ được sử dụng ở dưới nồng độ cho phép nào đó. Mỗi nước, kể cả Việt nam, đều có danh sách này và các doanh nghiệp phải triệt để tuân thủ. May mắn cho chúng ta là các hoá chất đó không nhiều. Đa số các hoá chất khác chỉ có hại nếu vượt qua một nồng độ nào đó, hoặc trong một số điều kiện nào đó. Các cơ quan chức năng với các nhà khoa học đã và đang nghiên cứu và ban hành những luật lệ để kiểm soát hoá chất và sử dụng chúng mà không bị nguy hiểm, độc hại cho sức khoẻ.

Nguy cơ và lợi ích

Do đó, không nên máy móc cho rằng hoá chất là có hại và không nên sử dụng chúng. Thí dụ, ai cũng biết xăng dầu có hại cho sức khoẻ (nếu sử dụng không đúng cách) nhưng lợi ích từ xăng dầu thì không ai có thể phủ nhận, và xăng dầu được sử dụng trong rất nhiều lãnh vực. Thuốc men cũng vậy, ngoài ra còn vô vàn các sản phẩm khác được phát minh ra để phục vụ đời sống, làm cho cuộc sống thoải mái, tốt đẹp hơn. Nước hoa, hoặc hương thơm của các sản phẩm mỹ phẩm, ngay cả các sản phẩm tẩy rửa, chăm sóc nhà cửa…đều tạo nên vẻ đẹp cho cuộc sống, làm nhẹ đi sự nặng nhọc trong các công việc hàng ngày, không nên vì một số những lo ngại hoặc cảnh báo không căn cứ mà không sử dụng.

Gần đây, có một số thông tin nói về hoá chất được sử dụng trong nước xả làm mềm vải khiến người tiêu dùng hoang mang, lo lắng, thậm chí một số ngưng sử dụng sản phẩm này. Như vậy, người tiêu dùng đã từ chối những lợi ích rõ rệt mà nước xả làm mềm vải mang lại như làm quần áo mềm mại, hương thơm dễ chịu, chống tĩnh điện, giúp dễ ủi quần áo… khiến chúng ta thoải mái hàng ngày chỉ vì những thông tin không đầy đủ. Chưa kể là, những thông tin này còn gây cho người tiêu dùng nỗi lo ngại về sử dụng hoá chất, hương liệu nói chung trong rất nhiều các sản phẩm hoá mỹ phẩm an toàn được phép lưu hành mà chúng ta đã và đang sử dụng trong đời sống hàng ngày.

Lời khuyên cho người tiêu dùng

Về góc độ người tiêu dùng, điều quan trọng là phải lựa chọn đúng đắn các sản phẩm để sử dụng, và sử dụng đúng như cách thức đã được chỉ dẫn.

Nên chọn các sản phẩm từ các nhà sản xuất lớn, có uy tín, các tập đoàn toàn cầu, vì các nhà sản xuất này có đủ điều kiện vật chất, cũng như đội ngũ các chuyên gia để nghiên cứu, thiết lập nên công thức của sản phẩm, và đánh giá công thức này vừa tính năng công dụng, vừa độ an toàn khi sử dụng. Ngoài ra, khi đưa vào sản xuất, cũng được theo dõi, kiểm soát chặt chẽ từ khâu nhập nguyên liệu tốt, qui trình sản xuất đúng tiêu chuẩn và kiểm tra chất lượng cho đến khâu phân phối sản phẩm. Để bảo vệ uy tín của mình, các nhà sản xuất lớn thường tuân thủ nghiêm chỉnh các luật lệ đã được đề ra, cũng như có thông tin rõ ràng, có bộ phận tư vấn, chăm sóc khách hàng và có trách nhiệm cao đối với sản phẩm của mình. Sản phẩm cũng được đăng ký chất lượng và kiểm soát bởi các cơ quan chức năng.

Tiến sỹ Hoá Học Phạm Thành Quân

Phó Trưởng Khoa Hóa trường Đại Học Bách Khoa Tp.Hồ Chí Minh

PROPYLENE GLYCOL and ETHYLENE GLYCOL ( PG và MEG)

1/What is the difference between ethylene glycol and propylene glycol?
Ethylene glycol and propylene glycol are chemically similar. Ethylene glycol has the chemical formula C2H6O2. Propylene has the chemical formula C3H8O2. Ethylene glycol has a slightly higher boiling point than propylene glycol. Ethylene glycol is less expensive to produce and is more widely used. Propylene glycol is less toxic.

2/Can I add propylene glycol based antifreeze to my existing ethylene glycol based antifreeze?
Ethylene glycol and propylene glycol are chemically very similar and can be mixed without harming the cooling system. Ethylene glycol does have better heat transfer properties than propylene glycol. Adding propylene glycol does not make the ethylene glycol less toxic.

3/How does antifreeze differ from engine coolant?
Engine coolant is a generic term used to describe fluids that remove heat from an engine. Antifreeze is a more specific term used to describe products used to provide protection against freezing. Many people use these terms interchangeably, as we also do in this FAQ.

4/Can I add propylene glycol based antifreeze to my existing ethylene glycol based antifreeze?
Ethylene glycol and propylene glycol are chemically very similar and can be mixed without harming the cooling system. Ethylene glycol does have better heat transfer properties than propylene glycol. Adding propylene glycol does not make the ethylene glycol less toxic.

5/Is it true that cooling system problems are the leading cause of engine failures? Can using the right antifreeze help?
Yes, cooling system neglect is the leading cause of premature engine failure. Using the right antifreeze is only part of the solution. Poor water quality and incorrect dilution are root causes for most cooling system problems.

6/How often do I need to change my antifreeze?
You should always follow the vehicle or engine manufacturer's recommendations for antifreeze change intervals and cooling system maintenance.
http://www.thchemicals.blogspot.com/
T.H.C - Tran hung Cuong - 0909-919-331

PRINTING PROCESS


Đại cương về công nghệ in

In ấn là quá trình tạo ra chữ và tranh ảnh trên các chất liệu nền như giấy, bìa các tông, ni lông bằng một chất liệu khác gọi là mực in. In ấn thường được thực hiện với số lượng lớn ở quy mô công nghiệp và là một phần quan trọng trong xuất bản. Trong bài viết này Sapacovn.com sẽ giới thiệu đến quý độc giả một số khái niệm cơ bản về kỹ thuật in.

1. In typo:
Đây là phương pháp in.. đầu tiên và cổ xưa nhất, được phát minh bởi người Trung Quốc nhưng người Đức (Johan Gutenberg) mới là người được công nhận là ông tổ ngành in. Và nước ứng dụng đại trà thành công in typo nhất cho đến ngày hôm nay là Việt Nam với công nghệ in trên ... tường hay còn gọi là công nghệ in "KHOAN CẮT BÊ TÔNG" nổi tiếng.Về nguyên lý, in typo là phương pháp in cao, tức là trên khuôn in typo, các phần tử in (hình ảnh, chữ viết) nằm cao hơn các phần không in. Khi in, chúng ta chà mực qua bề mặt khuôn in, các phần tử in nằm cao hơn nên sẽ nhận mực và sau đó khi ép in, mực sẽ truyền qua bề mặt giấy in tạo thành hình ảnh, chữ cần in. Một ví dụ gần gũi đó là con dấu (mộc), trên con dấu hình ảnh được khắc nổi cao hơn phần xung quanh, khi đóng dấu ta sẽ ấn nó vào tămbông để lấy mực, sau đó đóng "kịch" một phát thế là xong. Khuôn in typo cũng được khắc nổi lên như con dấu, tuy nhiên nó được chế tạo từ kim lọai (hợp kim chì) bằng quá trình ăn mòn axít, các chữ viết thì được đúc thành các con chữ riêng lẻ, sau đó sẽ được sắp lại bằng tay thành từng bộ khuôn của từng trang sách (cho nên mới gọi là công đọan sắp chữ).Phương pháp in typo sắp chữ hiện nay không còn được sử dụng do sản lượng thấp, lạc hậu và độc hại (chữ in được đúc từ hợp kim chì là một kim lọai độc hại). Một số ứng dụng khác của in typo như in số nhảy, ép chìm nổi, ép nhũ bạc, vàng... vẫn còn được sử dụng. Máy in typo ở Việt Nam được cải tiến thành máy bế đặt tay ứng dụng rất hiệu quả.

2. In flexo:
In flexo bắt nguồn từ chữ flexible, nghĩa là mềm dẻo. Khuôn in flexo cũng thuộc dạng khuôn in cao như in typo, tuy nhiên nó được chế tạo từ chất dẻo (cao su hoặc nhự phoyopolymer) bằng quá trình phơi quang hóa. Phương pháp in này được sử dụng rộng rãi để in các lọai nhãn decal, bao bì hoặc thùng carton.

3. In ống đồng:
In ống đồng về nguyên lý nó là phương pháp in lõm, tức là trên khuôn in, hình ảnh hay chữ viết (gọi là phần tử in) được khắc lõm vào bề mặt kim lọai.

Khi in sẽ có 2 quá trình:
Mực (dạng lỏng) được cấp lên bề mặt khuôn in, dĩ nhiên mực cũng sẽ tràn vào các chỗ lõm của phần tử in, sau đó một thiết bị gọi là dao gạt sẽ gạt mực thừa ra khỏi bề mặt khuôn in, và khi ép in mực trong các chỗ lõm dưới áp lực in sẽ truyền sang bề mặt vật liệu.Khuôn in ống đồng có dạng trục kim lọai, làm bằng thép, bề mặt được mạ một lớp đồng mỏng, phần tử in sẽ được khắc lên bề mặt lớp đồng này nhờ axít hoặc hiện đại hơn là dùng máy khắc trục. Sau đó bề mặt lớp đồng lại được mạ một lớp crôm mỏng để bảo vệ nên có người lại nói đây là phương pháp in.. ống crôm chứ không phải in ống đồng.
Trục in bằng đồng
Máy khắc trục đang hoạt động
Hình vẽ mô tả cấu tạo 1 cụm in của máy in ống đồng (impression cylinder: trục ép in, stock: vật liệu, printing cylinder: trục in (khuôn in), ink fountain: bể chứa mực hay máng mực)
In ống đồng được ứng dụng trong ngành in bao bì màng nhựa, đơn cử như bao đựng OMO, Viso, bánh kẹo Bibica, hay cà phê Trung Nguyên…

4. In lụa:
In lụa là phương pháp in xuyên, khuôn in có cấu tạo là một tấm lưới (polyester hoặc kim loại) căng trên một khung chữ nhật làm bằng gỗ hoặc hợp kim nhôm. Khi in, người ta cho mực vào lòng khung, gạt qua bằng một lưỡi dao cao su. Dưới áp lực của dao gạt, mực sẽ xuyên qua các ô lưới và truyền (dính lên) bề mặt vật liệu bên dưới, tạo nên hình ảnh in.

5. In offset:
Đây là phương pháp in phổ biến nhất và cũng phương pháp in được nhắc đến nhiều nhất đối với những người làm design thiết kế. Nguyên lý của phương pháp in này đơn giản nhưng khó hình dung nếu chưa được tay sờ mắt thấy "hiện vật".In offset là phương pháp in theo nguyên lý in phẳng, tức là trên khuôn in hình ảnh, chữ viết và những vùng không in đều có độ cao bằng nhau. Khuôn in làm từ một tấm nhôm mỏng (khỏang 0.25mm), trên khuôn in, phần trắng (không in) có bề mặt là nhôm, còn phần tử in (hình ản, chữ viết) được cấu tạo từ một lọai nhựa đặc biệt gọi là nhựa diazô. Lớp nhựa này có tính chất hút dầu, đẩy nước, và mực in offset là lọai mực (có gốc) dầu. Trong quá trình in, trước tiên bề mặt khuôn in đuợc chà một lớp nước mỏng, lớp nước này sẽ dính ướt vào vùng không in (chính là lớp nhôm đó). Sau đó khuôn in mới được chà mực. Vì mực có gốc dầu nên nó không thể dính vào phần trắng trên khuôn in (đang dính nước) được, mà chỉ bắt dính lên phần tử in là nhựa diazo ưa dầu mà thôi. Chính vì vậy dù khuôn in phẳng lì nhưng khi chà mực, mực nó không chà... tùm lum lên bề mặt khuôn mà chỉ truyền đúng vào phần tử in tạo thành hình ảnh, chữ viết trên bề mặt khuôn in mà thôi. Và sau đó, khi ép in lên bề mặt vật liệu in sẽ cho ra hình ảnh cần in.
Hình chụp phóng to bề mặt khuôn in offset. Phần màu sẫm chính là hạt tram trên bản in, phần màu sáng (giống như bị rỗ) là phần bề mặt nhôm.
Hình minh họa một tấm bản in offset sau khi phơi bản, đang chạy ra khỏi máy hiện. Phần hình màu xanh bã đậu trên tấm bản in chính là màu của lớp nhựa diazô
Vì sao gọi là offset (offset = truyền qua): khi in bản in không ép trực tiếp lên giấy hay vật liệu in như những phương pháp in khác mà sẽ được ép lên bề mặt một tấm cao su, sau đó tấm cao su này mới được ép lên bề mặt giấy. Việc này nhằm tạo ra sự truyền mực tối ưu nhất (truyền từ bề mặt cứng --> mềm --> cứng).

t.h.c
Solvents & Chemicals

CHẤT TẨY SƠN

Dung môi tẩy sơn cơ bản hay chất cạo sơn là những dung môi dùng để cạo bỏ lớp sơn cũ. Chúng không phải là một hóa chất duy nhất mà là sự trộn lẫn của nhiều chất khác nhau, mỗi chất có một tác dụng riêng. Các thành phần hoạt hóa thường là một chất được gọi là metylen clorua. Một số sản pẩm có chứa các thành phần hoạt hóa khác với metylen clorua, nhưng chúng không hiệu quả lắm trong việc ăn mòn, làm giộp và gây tróc lớp sơn cũ.
Một số hóa chất khác trong chất tẩy sơn có tác dụng tăng nhanh quá trình làm bong, và làm chậm quá trình bay hơi của dung môi, và đóng vai trò như một tác nhân làm giày dung môi (giữ cho dung môi bay hơi chậm hơn).
Chất tẩy sơn tiêu biểu có hai loại, dạng lỏng và dạng nhũ tương. Nhìn chung thì dạng lỏng sẽ tẩy nhanh hơn. Dạng nhũ tương thì tẩy sạch hơn vì nó không bị nhỏ giọt và bám dính lâu hơn, nhất là trên những vật hình trụ hay khi làm việc với bề mặt thẳng đứng.
Thật khó để nói rằng bất cứ một chất hay hỗn hợp các chất có khả năng bám dính cao dùng để bóc lớp sơn cũ, nên phải được lựa chọn cẩn thận. Những dung môi hòa tan cơ bản sẽ tẩy nhanh hơn và không có tác dụng xấu lên bề mặt của gỗ, nhưng chúng có thể có hại đến sức khỏe con người vì vậy nên đọc kỹ hướng dẩn sử dụng của nhà sản xuất trước khi dùng.
Về cơ bản thì có một số điểm lưu ý về an toàn khi sử dụng chất tẩy sơn nhưng không thể thay thế được bản hướng dẫn của nhà sản xuất đối với từng sản phẩm, điều quan trọng là bạn phải đọc lưu ý được in trên nhãn của mỗi sản phẩm.
T-H-C. - http://www.thchemicals.blogspot.com/

Vai trò của các nguyên tố hóa học trong cơ thể


Vai trò của các nguyên tố hóa học trong cơ thể

Chúng ta được biết hơn 100 nguyên tố hoá học, trong cơ thể con người có nhiều nguyên tố hoá học, chúng có vai trò như thế nào đối với sự phát triển của con người? Sau đây là một vài nguyên tố và vai trò của chúng.

1. Natri (Na)
Natri là kim loại kiềm có rất nhiều và quan trọng trong cơ thể, Natri tồn tại trong cơ thể chủ yếu dưới dạng hòa hợp với clorua, bicacbonat và photphat, một phần kết hợp với axit hữu cơ và protein. Na còn tồn tại ở các gian bào và ở các dịch thể như: máu, bạch huyết… Na được thu nhận vào cơ thể chủ yếu dưới dang muối NaCl. Thường mỗi ngày mỗi người trưởng thành thì cần khoảng 4-5 gram Na tương ứng với 10-12,5 gram muối ăn được đưa vào cơ thể. Đưa nhiều muối Na vào cơ thể là không có lợi. Ở trẻ em trong trường hợp này thân nhiệt bị tăng lên cao người ta gọi là sốt muối. Na được thải ra ngoài theo nước tiểu. Na thải ra theo đường mồ hôi thì không nhiều. Tuy nhiên, khi nhiệt độ của môi trường tăng lên cao thì lượng Na sẽ mất đi theo mồ hôi là rất lớn. Vì vậy, ta nên sử dụng dung dịch NaCl cao hơn để giảm bớt sự bài tiết mồ hôi.

2. Kali (K)
Trong cơ thể, K tồn tại chủ yếu trong các bào và dưới dạng muối clorua và bicacbonat. Cơ là kho dự trữ K, khi thức ăn thiếu K, thì K dự trữ được lấy ra để sử dụng. Muối K thường có trong thức ăn thực vật. Hàm lượng K có cao nhất là trong các mô tuyến, mô thần kinh, mô xương. K được đưa và cơ thể hằng ngày khoảng 2-3 gram chủ yếu theo thức ăn. Trong khoai tây và thức ăn thực vật có nhiều K, lượng K trong máu giảm đi là do tác dụng của thuốc. K mà thải nhiều theo nước tiểu sẽ gây rối loạn các chức năng sinh lý của cơ tim. K có chức năng làm tăng hưng phấn của hệ thần kinh và hoạt động của nhiều hệ enzim.

3. Canxi (Ca)
Ca chiếm khoảng 2% khối lượng của cơ thể. Ca và P chiếm khoảng 65- 70% toàn bộ các chất khoáng của cơ thể. Ca có ảnh hưỏng đến nhiều phản ứng của các enzim trong cơ thể. Ca có vai trò rất quan trọng trong quá trình đông máu và trong hoạt động của hệ cơ và hệ thần kinh nói chung. Ca còn có vai trò quan trọng trong cấu tạo của hệ xương. Ca tồn tại trong cơ thể chủ yếu là dưới dạng muối cacbonat (CaCO3) và photphat (Ca3(PO4)2), một phần nhỏ dưới dạng kết hợp với Protein. Mỗi ngày một người lớn cần khoảng 0,6-0,8 gram Ca. Tuy vậy, lượng Ca có trong thức ăn phải lớn hơn nhiều, vì các muối Ca là rất khó hấp thu qua đường ruột. Do vậy, mỗi ngày trong thức ăn cần phải có khoảng 3-4 gram Ca. Đối với phụ nữ trong thời gian mang thai thì nhu cầu của thai là rất lớn, vì Ca sẽ tham gia vào cấo tạo của xương. Để Ca có thể tham gia vào cấu tạo của hệ xương thì cần phải có đủ một lượng photpho nhất định mà tỷ lệ tối ưu của Ca và P là 1:1,5. Tỷ lệ này có ở trong sữa. Hàm lượng của Ca của cơ thể là tăng theo độ tuổi. Ca thường có trong các loại rau (rau muống, mùng tơi, rau dền, rau ngót…) nhưng hàm lượng là không cao. Các loại thức ăn thuỷ sản có nhiều Ca hơn.

4. Photpho (P)
Photpho chiếm khoảng 1% khối lượng cơ thể. Photpho có các chức năng sinh lý như: cùng với Ca cấu tạo xương, răng, hoá hợp với protein, lipit và gluxit để tham gia cấu tạo tế bào và đặc biệt màng tế bào. Ngoài ra còn tham gia vào các cấu tạo của AND, ARN, ATP… Photpho còn tham gia vào quá trình photphorin hoá trong quá trình hóa học của sự co cơ. Photpho tồn tại trong cơ thể dưới dạng hợp chất vô cơ, với canxi trong hợp chất Ca3(PO4)2 để tham gia vào cấu tạo xương. Photpho được hấp thu trong cơ thể dưới dạng muối Na và K và sẽ được đào thải ra ngoài qua thận và ruột. Nhu cầu photpho hàng ngày của người trưởng thành là 1-2 gram. Phần lớn photpho vào cơ thể được phân bố ở mô xương và mô cơ, bột xương sau đó là bột thịt và bột cá…

5. Clo (Cl)
Clo trong cơ thể chủ yếu ở dạng muối NaCl và một phần ở dạng muối KCl. Cl còn có trong dịch vị ở dạng HCl. Cl được đưa vào cơ thể chủ yếu dưới dạng muối NaCl. Khi cơ thể nhận được nhiều muối ăn thì Cl sẽ được dự trữ dưới da. Cl tham gia vào quá trình cân bằng các ion giữa nội và ngoại bào. Nếu thiếu Cl con vật sẽ kém ăn và nếu thừa Cl thì có thể gây độc cho cơ thể. Bổ sung Cl cho cơ thể chủ yếu dưới dạng muối NaCl. Mỗi ngày mỗi người cần khoảng 10–12,5 gram NaCl…

6. Lưu huỳnh (S)
Lưu huỳnh chiếm khoảng 0,25% khối lượng cơ thể. S có trong cơ thể chủ yếu có trong các axit amin như: Sistein, metionin. S có tác dụng là để hình thành lông, tóc và móng. Sản phẩm trao đổi của S là sunfat có tác dụng trong việc giải độc. S được cung cấp một phần là do ở dạng hữu cơ nhất là protein cung cấp cho cơ thể.

7. Magie (Mg)
Mg chiếm khoảng 0,05% khối lượng cơ thể và tồn tại ở xương dưới dạng Mg3(PO4)2 có trong tất cả các tế bào của cơ thể. Mg có tác dụng sinh lý là ức chế các phản ứng thần kinh và cơ. Nếu trong thức ăn hằng ngày mà thiếu Mg thì cơ thể có thể bị mắc bệnh co giật. Mg còn cần cho các enzim trong quá trình trao đổi chất, thúc đẩy sự canxi hoá để tạo thành photphat canxi và magie trong xương và răng. Mg được cung cấp nhiều trong thức ăn thực vật, động vật.

8. Sắt (Fe)
Hàm lượng Fe trong cơ thể là rất ít, chiếm khoảng 0,004% được phân bố ở nhiều loại tế bào của cơ thể. Sắt là nguyên tố vi lượng tham gia vào cấu tạo thành phần Hemoglobin của hồng cầu, myoglobin của cơ vân và các sắc tố hô hấp ở mô bào và trong các enzim như: catalaz, peroxidaza… Fe là thành phần quan trọng của nhân tế bào. Cơ thể thiếu Fe sẽ bị thiếu máu nhất là phụ nữ có thai và trẻ em.Trong cơ thể Fe được hấp thu ở ống tiêu hoá dưới dạng vô cơ nhưng phần lớn dưới dạng hữu cơ với các chất dinh dưỡng của thức ăn. Nhu cầu hằng ngày của mỗi người là từ khoảng 10-30 miligram. Nguồn Fe có nhiều trong thịt, rau, quả, lòng đỏ trứng, đậu đũa, mận…

9. Đồng (Cu)
Đồng có trong tất cả các cơ quan trong cơ thể, nhưng nhiều nhất là ở gan. Đồng có nhiều chức năng sinh lý quan trọng chủ yếu cho sự phát triển của cơ thể như: thúc đẩy sự hấp thu và sử dụng sắt để tạo thành Hemoglobin của hồng cầu. Nếu thiếu đồng trao đổi sắt cũng sẽ bị ảnh hưởng, nên sẽ bị thiếu máu và sinh trưởng chậm… Đồng tham gia thành phần cấu tạo của nhiều loại enzim có liên quan chặt chẽ đến quá trình hô hấp của cơ thể. Đồng tham gia vào thành phần của sắc tố màu đen. Nếu thiếu đồng thì da sẽ bị nhợt nhạt, lông mất màu đen… Nhu cầu của cơ thể với đồng ít hơn sắt nhưng không thể thiếu đồng tới hoạt động của hệ thần kinh và các hoạt động khác của cơ thể…

10. Coban (Co)
Coban có chức năng là kích thích sự tạo máu ở tuỷ xương. Nếu thiếu Coban sẽ dẫn tới là thiếu vitamin B12 và dẫn đến thiếu máu ác tính, chán ăn suy nhược cơ thể…

11. Iot (I)
Hàm lượng Iot trong cơ thể là rất ít. Iot chủ yếu là trong tuyến giáp tràng của cơ thể. Iot được hấp thu vào cơ thể chủ yếu ở ruột non và màng nhầy của cơ quan hấp thu. Iot có chức năng sinh lý chủ yếu là tham gia vào cấu tạo hoocmon thyroxin của tuyến giáp trạng. Nếu cơ thể thiếu Iot có thể dẫn đến bệnh bướu cổ (nhược năng tuyến giáp)… Nguyên nhân của bệnh bướu cổ là do thiếu Iot trong thức ăn và nước uống hằng ngày. Vì vậy, cần phải bổ sung Iôt hằng ngày qua muối, rong biển, cá biển…

12. Magan (Mn)
Magan là chất có tác dụng kích thích của nhiều loại enzim trong cơ thể, có tác dụng đến sự sản sinh tế bào sinh dục, đến trao đổi chất Ca và P trong cấu tạo xương. Thức ăn cho trẻ em nếu thiếu Mn thì hàm lượng enzim phophotaza trong máu và xương sẽ bị giảm xuống nên ảnh hưởng đến cốt hoá của xương, biến dạng… Thiếu Mn còn có thể gây ra rối loạn về thần kinh như bại liệt, co giật…
Còn rất nhiều nguyên tố hoá học trong cơ thể con người, và vai trò của chúng khác nhau ở từng độ tuổi, hàm lượng các nguyên tố. Nhưng chúng có vai trò quan trọng trong quá trình sinh trưởng và phát triển của con người.

Nguon : Hoahocvui
http://www.thchemicals.blogspot.com/


SURFACTANT - CHẤT HOẠT ĐỘNG BỀ MẶT

Chất hoạt hóa bề mặt (tiếng Anh: Surfactant, Surface active agent) đó là một loại hóa chất mà phân tử của nó gồm hai thành phần: một đầu phân cực (ưa nước) và một đuôi không phân cực (kị nước).
+ Đặc điểm:
Chất hoạt hóa bề mặt được dùng để làm giảm sức căng bề mặt của một chất lỏng. Nếu có nhiều hơn hai chất lỏng không hòa tan thì chất hoạt hóa bề mặt làm tăng diện tích tiếp xúc giữa hai chất lỏng đó. Khi hòa chất hoạt hóa bề mặt vào trong một chất lỏng thì các phân tử của chất hoạt hóa bề mặt có xu hướng tạo đám (micelle, còn được dịch là mixen), nồng độ mà tại đó các phân tử bắt đầu tạo đám được gọi là nồng độ tạo đám tới hạn. Nếu chất lỏng là nước thì các phân tử sẽ chụm đuôi kị nước lại với nhau và quay đầu ưa nước ra tạo nên những hình dạng khác nhau như hình cầu (0 chiều), hình trụ (1 chiều), màng (2 chiều). Tính ưa, kị nước của một chất hoạt hóa bề mặt được đặc trưng bởi một thông số là độ cân bằng ưa kị nước (tiếng Anh: Hydrophilic Lipophilic Balance-HLB), giá trị này có thể từ 0 đến 40. HLB càng cao thì hóa chất càng dễ hòa tan trong nước, HLB càng thấp thì hóa chất càng dễ hòa tan trong các dung môi không phân cực như dầu.
+Phân loại:
Tùy theo tính chất mà chất hoạt hóa bề mặt được phân theo các loại khác nhau. Nếu xem theo tính chất điện của đầu phân cực của phân tử chất hoạt hóa bề mặt thì có thể phân chúng thành các loại sau:
**Chất hoạt hóa ion (tiếng Anh: ionic): khi bị phân cực thì đầu phân cực bị ion hóa.
**.Chất hoạt hóa dương: khi bị phân cực thì đầu phân cực mang điện dương, ví dụ: Cetyl trimêtylamôni brômua (CTAB).
**Chất hoạt hóa âm: khi bị phân cực thì đầu phân cực mang điện âm, ví dụ: bột giặt, axít béo.
**Chất hoạt hóa phi ion (tiếng Anh: non-ionnic): đầu phân cực không bị ion hóa, ví dụ: Ankyl poly(êtylen ôxít).
**Chất hoạt hóa lưỡng cực (tiếng Anh: zwitterionic): khi bị phân cực thì đầu phân cực có thể mang điện âm hoặc mang điện dương tùy vào pH của dung môi, ví dụ: Dodecyl đimêtylamin ôxít.
****Ứng dụng: Chất hoạt hóa bề mặt ứng dụng rất nhiều trong đời sống hàng ngày. Ứng dụng phổ biến nhất là bột giặt, sơn, dầu khí... http://www.thchemicals.blogspot.com/ ( Mr. W.CƯỜNG)
__________________

TAY NINH MOUNTAIN

TAY NINH MOUNTAIN
THC

TRÀ DƯ TỬU HẬU - CHUYỆN CƯỜI SƯU TẦM

Tiến sĩ triết học

Một cậu bé đề nghị bố giải thích cho cậu hiểu xem chính trị là gì. Ông bố nói : "Con hãy nhìn vào gia đình mình đây. Bố kiếm tiền và mang về nhà, vậy bố là Nhà tư bản. Mẹ quản lý số tiền này nên mẹ là Chính quyền. Bố mẹ chăm lo đến phúc lợi của con, cho con được hạnh phúc và bình yên nên con là Nhân dân. Chị giúp việc nhà ta là Giai cấp lao động còn cậu em còn quấn tã của con sẽ là Tương lai đất nước. Con đã hiểu chưa?" Cậu bé hãy còn băn khoăn nhưng trước tiên muốn đi ngủ cái đã.

Buổi đêm cậu bé tỉnh dậy vì chú em đã ị ra tã lót và đang kêu gào. Cậu tiến đến phòng ngủ của bố mẹ, gõ cửa nhưng mẹ đang ngủ rất say nên không nghe tiếng. Cậu bèn đi đến phòng của chị giúp việc và nhìn thấy bố đang vật nhau với chị ta trên giường. Cả hai đều mải mê nên không nghe thấy tiếng gõ cửa. Cậu lại đi về phòng và ngủ tiếp ...

Sáng hôm sau ông bố hỏi con trai xem nó đã hiểu thế nào là chính trị chưa và yêu cầu tự diễn giải lại. Cậu bé trả lời : "Vâng, bây giờ thì con đã hiểu. Nhà tư bản đè đầu cưỡi cổ Giai cấp lao động trong khi Chính quyền ngủ say không biết gì. Nhân dân hoàn toàn không được đếm xỉa đến và Tương lai thì thối hoắc



http://www.thchemicals.blogspot.com/

TOP 500 Doanh nghiệp Doanh số cao trong năm 2008

Bảng xếp hạng TOP 500 doanh nghiệp hàng đầu về doanh thu năm 2008 do VietNamNet Report bình chọn. Công ty Hoá chất SAPA - http://sapacovn.com vị trí 267 / 500 Doanh Nghiệp hàng đầu tại Việt nam http://vnr500.com.vn/vn/xephang/xephang2008/297/index.aspx , Và vị trí số 1 về hoá chất công nghiệp: http://vnr500.com.vn/vn/danhmucan/324/index.aspx Các bạn Doanh nghiệp quan tâm về CHEMICALS hãy cùng chia sẽ với SAPA CHEMICALS Company (Mr. W.Cường – 0909.919.331)